Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
J Exp Med ; 220(8)2023 08 07.
Article in English | MEDLINE | ID: mdl-37133746

ABSTRACT

SARS-CoV-2 infection for most children results in mild or minimal symptoms, though in rare cases severe disease can develop, including a multisystem inflammatory syndrome (MIS-C) with myocarditis. Here, we present longitudinal profiling of immune responses during acute disease and following recovery in children who developed MIS-C, relative to children who experienced more typical symptoms of COVID-19. T cells in acute MIS-C exhibited transient signatures of activation, inflammation, and tissue residency which correlated with cardiac disease severity, while T cells in acute COVID-19 upregulated markers of follicular helper T cells for promoting antibody production. The resultant memory immune response in recovery showed increased frequencies of virus-specific memory T cells with pro-inflammatory functions in children with prior MIS-C compared to COVID-19 while both cohorts generated comparable antibody responses. Together our results reveal distinct effector and memory T cell responses in pediatric SARS-CoV-2 infection delineated by clinical syndrome, and a potential role for tissue-derived T cells in the immune pathology of systemic disease.


Subject(s)
COVID-19 , Humans , Child , SARS-CoV-2 , Inflammation , Severity of Illness Index
2.
Immunol Rev ; 309(1): 25-39, 2022 08.
Article in English | MEDLINE | ID: mdl-35752871

ABSTRACT

The SARS-CoV-2 pandemic has demonstrated the importance of studying antiviral immunity within sites of infection to gain insights into mechanisms for immune protection and disease pathology. As SARS-CoV-2 is tropic to the respiratory tract, many studies of airway washes, lymph node aspirates, and postmortem lung tissue have revealed site-specific immune dynamics that are associated with the protection or immunopathology but are not readily observed in circulation. This review summarizes the growing body of work identifying immune processes in tissues and their interplay with immune responses in circulation during acute SARS-CoV-2 infection, severe disease, and memory persistence. Establishment of tissue resident immunity also may have implications for vaccination and the durability of immune memory and protection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Lung , Pandemics , Vaccination
3.
Arthritis Care Res (Hoboken) ; 74(4): 656-664, 2022 04.
Article in English | MEDLINE | ID: mdl-33171010

ABSTRACT

OBJECTIVE: The risk of thrombotic events is elevated in patients with systemic lupus erythematosus (SLE) compared to the general population and has been attributed to both systemic inflammation and to the presence of antiphospholipid antibodies (aPLs). Our objective was to examine differences in aPL prevalence in White and African American patients with SLE and venous thromboembolic (VTE) events, and to compare inflammatory markers at the time of a VTE event. METHODS: Records of White and African American patients with SLE and VTE events were retrieved from a rheumatology practice based at an academic hospital. A clinically significant aPL profile was defined as anti-cardiolipin IgG/IgM and/or anti-ß2 -glycoprotein I IgG/IgM ≥40 units, and/or positive lupus anticoagulant ≥1.3. Logistic regression was used to determine predictors of a clinically significant aPL profile. RESULTS: Ninety-seven patients fulfilled American College of Rheumatology and/or 2012 Systemic Lupus Erythematosus International Collaborating Clinics classification criteria for SLE, had a history of VTE events, and had available aPL tests (59 White and 38 African American patients). African American patients were 66% less likely (95% confidence interval 0.12-0.96; P = 0.04) to have a clinically significant aPL profile compared to White patients in multivariable regression. Triple positivity was most frequent among White patients, while 7 of 8 African American patients had a positive lupus anticoagulant test. At the time of a VTE event, African American patients had significantly higher levels of anti-double-stranded DNA (P = 0.02), lower hemoglobin (P = 0.01), and higher erythrocyte sedimentation rate (P = 0.008). CONCLUSION: Among patients with SLE and VTE events, African American patients were less likely to have a clinically significant aPL profile compared to White patients, indicating that a negative aPL profile in African American patients does not decrease VTE risk.


Subject(s)
Antiphospholipid Syndrome , Lupus Erythematosus, Systemic , Venous Thromboembolism , Black or African American , Antibodies, Anticardiolipin , Antibodies, Antiphospholipid , Autoantibodies , Humans , Immunoglobulin G , Immunoglobulin M , Lupus Coagulation Inhibitor , Lupus Erythematosus, Systemic/complications , Lupus Erythematosus, Systemic/diagnosis , Lupus Erythematosus, Systemic/epidemiology , Venous Thromboembolism/diagnosis , Venous Thromboembolism/epidemiology , Venous Thromboembolism/etiology
4.
Immunity ; 54(4): 797-814.e6, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33765436

ABSTRACT

Immune response dynamics in coronavirus disease 2019 (COVID-19) and their severe manifestations have largely been studied in circulation. Here, we examined the relationship between immune processes in the respiratory tract and circulation through longitudinal phenotypic, transcriptomic, and cytokine profiling of paired airway and blood samples from patients with severe COVID-19 relative to heathy controls. In COVID-19 airways, T cells exhibited activated, tissue-resident, and protective profiles; higher T cell frequencies correlated with survival and younger age. Myeloid cells in COVID-19 airways featured hyperinflammatory signatures, and higher frequencies of these cells correlated with mortality and older age. In COVID-19 blood, aberrant CD163+ monocytes predominated over conventional monocytes, and were found in corresponding airway samples and in damaged alveoli. High levels of myeloid chemoattractants in airways suggest recruitment of these cells through a CCL2-CCR2 chemokine axis. Our findings provide insights into immune processes driving COVID-19 lung pathology with therapeutic implications for targeting inflammation in the respiratory tract.


Subject(s)
COVID-19/immunology , Lung/immunology , Myeloid Cells/immunology , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , COVID-19/blood , COVID-19/mortality , COVID-19/pathology , Cytokines/immunology , Cytokines/metabolism , Humans , Inflammation , Longitudinal Studies , Lung/pathology , Macrophages/immunology , Macrophages/pathology , Middle Aged , Monocytes/immunology , Monocytes/pathology , Myeloid Cells/pathology , SARS-CoV-2 , T-Lymphocytes/immunology , T-Lymphocytes/pathology , Transcriptome , Young Adult
5.
Nat Immunol ; 22(1): 25-31, 2021 01.
Article in English | MEDLINE | ID: mdl-33154590

ABSTRACT

Clinical manifestations of COVID-19 caused by the new coronavirus SARS-CoV-2 are associated with age1,2. Adults develop respiratory symptoms, which can progress to acute respiratory distress syndrome (ARDS) in the most severe form, while children are largely spared from respiratory illness but can develop a life-threatening multisystem inflammatory syndrome (MIS-C)3-5. Here, we show distinct antibody responses in children and adults after SARS-CoV-2 infection. Adult COVID-19 cohorts had anti-spike (S) IgG, IgM and IgA antibodies, as well as anti-nucleocapsid (N) IgG antibody, while children with and without MIS-C had reduced breadth of anti-SARS-CoV-2-specific antibodies, predominantly generating IgG antibodies specific for the S protein but not the N protein. Moreover, children with and without MIS-C had reduced neutralizing activity as compared to both adult COVID-19 cohorts, indicating a reduced protective serological response. These results suggest a distinct infection course and immune response in children independent of whether they develop MIS-C, with implications for developing age-targeted strategies for testing and protecting the population.


Subject(s)
Antibodies, Viral/immunology , Antibody Formation/immunology , COVID-19/immunology , Nucleocapsid Proteins/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adolescent , Adult , Aged , COVID-19/virology , Child , Child, Preschool , Female , Humans , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Male , Middle Aged , SARS-CoV-2/physiology , Young Adult
6.
medRxiv ; 2020 Oct 18.
Article in English | MEDLINE | ID: mdl-33106817

ABSTRACT

Immune responses to respiratory viruses like SARS-CoV-2 originate and function in the lung, yet assessments of human immunity are often limited to blood. Here, we conducted longitudinal, high-dimensional profiling of paired airway and blood samples from patients with severe COVID-19, revealing immune processes in the respiratory tract linked to disease pathogenesis. Survival from severe disease was associated with increased CD4 + T cells and decreased monocyte/macrophage frequencies in the airway, but not in blood. Airway T cells and macrophages exhibited tissue-resident phenotypes and activation signatures, including high level expression and secretion of monocyte chemoattractants CCL2 and CCL3 by airway macrophages. By contrast, monocytes in blood expressed the CCL2-receptor CCR2 and aberrant CD163 + and immature phenotypes. Extensive accumulation of CD163 + monocyte/macrophages within alveolar spaces in COVID-19 lung autopsies suggested recruitment from circulation. Our findings provide evidence that COVID-19 pathogenesis is driven by respiratory immunity, and rationale for site-specific treatment and prevention strategies.

7.
medRxiv ; 2020 Jul 14.
Article in English | MEDLINE | ID: mdl-32699861

ABSTRACT

Clinical manifestations of COVID-19 caused by the novel coronavirus SARS-CoV-2 are associated with age. While children are largely spared from severe respiratory disease, they can present with a SARS-CoV-2-associated multisystem inflammatory syndrome (MIS-C) similar to Kawasaki's disease. Here, we show distinct antibody (Ab) responses in children with MIS-C compared to adults with severe COVID-19 causing acute respiratory distress syndrome (ARDS), and those who recovered from mild disease. There was a reduced breadth and specificity of anti-SARS-CoV-2-specific antibodies in MIS-C patients compared to the COVID patient groups; MIS-C predominantly generated IgG Abs specific for the Spike (S) protein but not for the nucleocapsid (N) protein, while both COVID-19 cohorts had anti-S IgG, IgM and IgA Abs, as well as anti-N IgG Abs. Moreover, MIS-C patients had reduced neutralizing activity compared to COVID-19 cohorts, indicating a reduced protective serological response. These results suggest a distinct infection course and immune response in children and adults who develop severe disease, with implications for optimizing treatments based on symptom and age.

8.
Arthritis Res Ther ; 22(1): 52, 2020 03 19.
Article in English | MEDLINE | ID: mdl-32188491

ABSTRACT

BACKGROUND: Lupus patients are at risk for pregnancy loss, and it has been generally accepted that women with SLE should have low disease activity prior to conception. However, there are conflicting results regarding the effect of pregnancy on SLE flares. This study aims to identify predictors of flares during and after pregnancy in SLE patients with inactive or stable disease activity during the first trimester and to characterize and estimate the frequency of post-partum flares in these patients. METHODS: SLE patients in the multicenter, prospective PROMISSE (Predictors of Pregnancy Outcome: Biomarkers in Antiphospholipid Antibody Syndrome and Systemic Lupus Erythematosus) study were evaluated for flares during and after pregnancy using the SELENA-SLEDAI Flare Index. Flares during pregnancy were assessed in all 384 patients and post-partum flares in 234 patients with study visits 2-6 months post-partum. Logistic regression models were fit to the data to identify independent risk factors for flare. RESULTS: During pregnancy, 20.8% of patients had mild/moderate flares and 6.25% had severe. Post-partum, 27.7% of patients had mild/moderate flares and 1.7% had severe. The mild flares rarely required treatment. Younger age, low C4 and higher PGA at baseline were independently associated with higher risk of having at least one mild/moderate or severe flare during pregnancy. Older patients were at decreased risk of flare, as well as those with quiescent disease at baseline. No variables evaluated at baseline or the visit most proximal to delivery was significantly associated with risk of flare post-partum. Medications were not associated with flare during or after pregnancy. CONCLUSION: In patients with inactive or stable mild disease activity at the time of conception, lupus disease flares during and after pregnancy are typically mild and occur at similar rates. Flares during pregnancy are predicted by the patients' age and clinical and serological activity at baseline.


Subject(s)
Lupus Erythematosus, Systemic/immunology , Postpartum Period/immunology , Pregnancy Complications/immunology , Pregnancy Trimester, First/immunology , Adult , Antibodies, Antinuclear/blood , Antibodies, Antinuclear/immunology , Biomarkers/blood , Disease Progression , Female , Humans , Logistic Models , Lupus Erythematosus, Systemic/blood , Postpartum Period/blood , Pregnancy , Pregnancy Complications/blood , Pregnancy Trimester, First/blood , Prospective Studies , Risk Factors , Severity of Illness Index
9.
Elife ; 72018 07 13.
Article in English | MEDLINE | ID: mdl-30003873

ABSTRACT

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) represent two ends of a disease spectrum with shared clinical, genetic and pathological features. These include near ubiquitous pathological inclusions of the RNA-binding protein (RBP) TDP-43, and often the presence of a GGGGCC expansion in the C9ORF72 (C9) gene. Previously, we reported that the sequestration of hnRNP H altered the splicing of target transcripts in C9ALS patients (Conlon et al., 2016). Here, we show that this signature also occurs in half of 50 postmortem sporadic, non-C9 ALS/FTD brains. Furthermore, and equally surprisingly, these 'like-C9' brains also contained correspondingly high amounts of insoluble TDP-43, as well as several other disease-related RBPs, and this correlates with widespread global splicing defects. Finally, we show that the like-C9 sporadic patients, like actual C9ALS patients, were much more likely to have developed FTD. We propose that these unexpected links between C9 and sporadic ALS/FTD define a common mechanism in this disease spectrum.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , C9orf72 Protein/genetics , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Heterogeneous-Nuclear Ribonucleoproteins/analysis , Polypyrimidine Tract-Binding Protein/analysis , RNA Splicing , Brain/pathology , DNA-Binding Proteins/analysis , Humans , Mutagenesis, Insertional
SELECTION OF CITATIONS
SEARCH DETAIL
...